Publications acceptées, octobre 2012

Quelques publications reliées aux thématiques d’EECLAT ayant été acceptées récemment :

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite provides robust and global direct measurements of the cloud vertical structure. The GCM-Oriented CALIPSO Cloud Product is used to evaluate the simulated clouds in five climate models using a lidar simulator. The total cloud cover is underestimated in all models (51% to 62% vs. 64% in observations) except in the Arctic. Continental cloud covers (at low, mid, high altitudes) are highly variable depending on the model. In the tropics, the top of deep convective clouds varies between 14 and 18 km in the models versus 16 km in the observations, and all models underestimate the low cloud amount (16% to 25%) compared to observations (29%). In the Arctic, the modeled low cloud amounts (37% to 57%) are slightly biased compared to observations (44%), and the models do not reproduce the observed seasonal variation. It results that the total cloud cover is underestimated in all models (51% to 62% instead of 64% in observations) except in Arctic. The continental cloud covers (at low, mid, high altitudes) are highly variable depending on the model. In the tropics, the top of the deep convective clouds varies between 14 and 18 km in the models against 16 km in the observations, and all the models underestimate the low cloud amount (16% to 25%) compared to observations (29%). In Arctic, the modeled low cloud amounts (between 57% and 37%) are slightly biased compared to observations (44%), and the models hardly reproduce the observed seasonal variation.

Ground-based observations show that persistent liquid-containing Arctic clouds occur frequently and have a dominant influence on Arctic surface radiative fluxes. Yet, without a hemispheric multi-year perspective, the climate relevance of these intriguing Arctic cloud observations was previously unknown. In this study, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations are used to document cloud phase over the Arctic basin (60-82 {degree sign}N) during a five-year period (2006-2011). Over Arctic ocean-covered areas, low-level liquid-containing clouds are prevalent in all seasons, especially in Fall. These new CALIPSO observations provide a unique and climate-relevant constraint on Arctic cloud processes. Evaluation of one climate model using a lidar simulator suggests a lack of liquid-containing Arctic clouds contributes to a lack of “radiatively opaque” states. The surface radiation biases found in this one model are found in multiple models, highlighting the need for improved modeling of Arctic cloud phase.

  • Chepfer H., G. Cesana, D. Winker, B. Getzewich, and M. Vaughan, 2012: Comparison of two different cloud climatologies derived from CALIOP Level 1 observations: the CALIPSO-ST and the CALIPSO-GOCCP, J. Atmos. Ocean. Tech., in press
  • Nam C., S. Bony, JL Dufresne, H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models, Geophys. Res. Lett., idoi:10.1029/2012GL053421.
Previous generations of climate models have been shown to under-estimate the occurrence of tropical low-level clouds and to over-estimate their radiative effects. This study analyzes outputs from multiple climate models participating in the Fifth phase of the Coupled Model Intercomparison Project (CMIP5) using the Cloud Feedback Model Intercomparison Project Observations Simulator Package (COSP), and compares them with different satellite data sets. Those include CALIPSO lidar observations, PARASOL mono-directional reflectances and CERES radiative fluxes at the top of the atmosphere. We show that current state-of-the-art climate models predict overly bright low-clouds, even for a correct low-cloud cover. The impact of these biases on the Earth’ radiation budget, however, is reduced by compensating errors. Those include the tendency of models to under-estimate the low-cloud cover and to over-estimate the occurrence of mid- and high-clouds above low-clouds. Finally, we show that models poorly represent the dependence of the vertical structure of low-clouds on large-scale environmental conditions. The implications of this ‘too few, too bright low-cloud problem’ for climate sensitivity and model development are discussed.
We compare Gravity Waves (GW) and Polar Stratospheric Clouds (PSC) above the Antarctic Peninsula for winters (June to September) between 2006 and 2010. GW activity is inferred from stratospheric temperature and vertical winds from the Weather and Research Forecast mesoscale model (WRF), and documented as a function of time and geography for the studied period. Significant GW activity affects 36% of days and follows the Peninsula orography closely. Volumes of PSC, composed of ice and Nitric Acid Trihydrate (NAT), are retrieved using observations from the spaceborne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). They are documented against GW activity as a function of time and longitude. Sixty-three percent of ice PSC are observed during GW events, when the average volume of PSC per profile doubles. Maximum ice PSC volumes are seen directly over the Peninsula (65°W), while maximum NAT PSC volumes appear downstream further East (∼35°W). Effects of GW events on NAT PSC are felt as far East as 40°E. Our results support the importance of gravity waves as a major mechanism driving the evolution of ice PSC in the area, but the effects on NAT PSC are harder to detect. After a GW event ends, volumes of ice PSC get back to their usual levels in less than 24 h, while this process takes more than 48 h for NAT PSC. Daily profiles of H2O and HNO3 mixing ratios, retrieved from MLS observations, are used to derive ice and NAT frost points with altitude and time. Combining these frost points with modeled stratospheric temperatures, the volumes of air able to support ice and NAT crystals are quantified and compared with PSC volumes. Correlation is high for ice crystals, but not for NAT, consistent with their much slower nucleation mechanisms. Observations of ice PSC over the domain are followed by a strong increase (+50–100%) in NAT PSC formation efficiency 2 to 6 h later. This increase is followed by a steep drop (6–10 h later) and a longer period of slow decline (10–24 h later), at the end of which the NAT PSC formation efficiency is less than half its initial value. The fact that these effects tend to cancel each other out, coupled to the important lag in NAT PSC reaction to GW activity, suggest why it is especially difficult to quantify how GW activity impacts NAT PSC cover.
During the POLARCAT-France airborne measurement campaign in spring 2008, several pollution plumes transported from mid-latitude regions were encountered. The study presented here focuses on air masses from two different geographic origins (Europe and Asia) and from 2 different source types (anthropogenic pollution and forest fires). A first case study is dedicated to a European air mass, which was repeatedly sampled and analysed during three consecutive days. Thereby, the evolution of the aerosol properties (size distributions, CO mixing ratio) is characterised and related processes are discussed. In particular, the role of coagulation, condensation and cloud processing in the evolution of the Aitken and the accumulation mode particles are contrasted. A second case study focuses on European air masses impacted solely by biomass burning emissions and Asian air masses with contributions from both biomass burning and anthropogenic emissions. The analysis of aerosol modes highlight a similar behaviour for particle originating from biomass burning (from Europe as well as Asia). In comparison to the predominating aged accumulation mode in biomass burning particles, a still larger aerosol accumulation mode related to Asian anthropogenic emissions can be isolated. These findings corroborate the external mixing of such kind of aerosol size distributions. An electron microscopy study (coupled to X-ray elemental analysis) of particles illustrated soot-like inclusions in several samples. Within samples attributed to forest fire sources, the chemical signature is highly associated with the presence of potassium, which is a characteristic tracer element for biomass burning plumes. The single particle images suggest an internal mixing of sampled individual aerosol particles. Thus, particles are found externally mixed as demonstrated from particle size distributions while they appear internally mixed at the particle scale.

Si vous souhaitez voir apparaitre vos publications acceptées, n’hésitez pas a nous les communiquer : vincent dot noel at lmd.polytechnique.fr.